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ABSTRACT

A Predicate Transition Net model of expert systems with fuzzy logic is proposed as a means
for dealing with uncertainty. Attention is focused on consultant expert systems which use the
production rules formalism to represent knowledge. Models of the basic fuzzy logical
operators are presented base on the Predicate Transition Nets formalism. The combination of
these operators allows to represent the links among the rules of a knowledge base and to
simulate dynamically the behavior of an expert system in its search for a solution to a
problem in its domain of expertise. Finally, two applications of this model are described:
assessment of parallelism in a knowledge base and the evaluation of time-related measures
for expert systems.
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1. 0 INTRODUCTION

Knowledge base expert systems show properties of synchronicity and concurrency which makes

them suitable for being represented with the Predicate Transition Net formalism. The rules of a

knowledge base have to be checked in a specific order depending on the strategy used to solve
K' the problem and on the current facts deduced so far by the system in the execution of previous

rules. This paper proposes a model of an expert system using production rules to represent

knowledge. Fuzzy logic is used to deal with uncertainty and Predicate Transition Nets are used to

represent the basic fuzzy logical operators AND, OR and NOT that appear in this kind of rules.

An extension of the standard inference net formalism is obtained by the combination of these

operators which permits to represent the dynamical behavior of an expert system. The

determination of the simple paths and of the slices of the net leads to the identification of the rules
which can be checked concurrently by the inference engine in a parallel architecture computer.

This net allows also thc identification of the rules scanned by the system to produce an answer to

a specific problem and to deduce its response time depending on the number of rules scanned and

on the number of interactions with the user.

2.0 STRUCTURE OF THE EXPERT SYSTEM

Knowledge Based Expert Systems, commonly called Expert Systems, are - in theory - able to

reason using an approach similar to the one followed by an expert when he solves a problem

within his field of expertise. An expert system can be used for many purposes :to control, to

diagnose, to solve problems, to plan, to design.

-: This paper proposes a model for the most common kind of expert system :the consultant

expert system, as described by Johnson and Keravnov (1985). Most systems engage in a
* dialogue with the user, the computer acting as a "consultant," by suggesting options on the basis

of its knowledge and the symbolic data supplied by the user. The dialogue terminates when a

decision or a recommendation is reached. The formalism used to represent knowledge in

consultant expert systems is the production system model.

Moving from known items of information to unknown information is the vital process of a
*1 consultant system. The user of a consultant expert system has "observed" some particular state of -

affairs within the domain of the system's expertise and submits these observations to the system
Examples of these states are a sick person, a faulty machine or a malfunctioning business
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environment. Based on the observations, the system makes inferences and suggests new routes

of investigation which will yield high grade information. Interactions continue until the system

finds the most likely explanation of the observations.

* There are three distinct components in an expert system, the Knowledge Base, the Fact base, and

the Inference Engine.

2.1 The Knowledge Base

The knowledge base contains the set of information specific to the field of expertise. Knowledge

is expressed in a language defined by the expert. The knowledge base is a collection of general

facts, empirical rules, and causal models of the problem domain. A number of formalisms exist

to represent knowledge. The most widely used is the production system model in which the

knowledge is encoded in the form of antecedent-consequent pairs or IF-THEN rules. A

* production rule is divided in two parts:

-A set of conditions (called left-hand side of the rule) combined logically together with a

AND or a OR operator,

-A set of consequences or actions (called also right-hand side of the rule), the value of

which is computed according to the conditions of the rule. These consequences can be

the conditions for other rules. The logical combination of the conditions on the left- hand

a side of the rule has to be true in order to validate the consequences and the actions.

,~. An example of a production rule is:

IF the flying object has delta wings AND

the object flies at great speed

- THEN the flying object is a fighter plane.

The conditions "the flying object has delta wings" and "the object flies at a great speed" have to

be true to attribute the value true the consequence "th~ flying object is a fighter plane."

an inference net. The net shows graphically the logical articulation of different facts or subgoals,
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and identifies which rules are used to reach a specific goal. Let us consider the following

production rules :

if A AND B, then C
if D OR E, then F

if NOT G, then H.

These rules ar-e represented in the inference net formalism on Figure 1.

C F H

AND T OR NOT

I

Figure 1 Representation of the logical operators in the inference net formalism

The Predicate Transition Net model developed in this paper is an extension of the inference net

formalism and permits the explicit representation of the rules of a knowledge base and the

relationships among them.

2.2 The Fact Base.

The fact base, also known as context or working memory, contains the data for the specific

problem to be solved. It is a workspace for the problem constructed by the inference mechanism

* from the information provided by the user and the knowledge base. The working memory

contains a trace of every line of reasoning previously used by memorizing all the intermediate

results. Therefore, this can be used to explain the origin of the information deduced or to
I describe the behavior of the system.
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2.3 The Inference Engine.

The Inference Engine is used to monitor the execution of the program by using the knowledge

base to modify the context. It uses the knowledge and the heuristics contained in the knowledge

* base to solve the problem specified by the data contained in the fact base. In the production

system modeled in this paper, the rules are of the kind, A -> B, saying that if A is valid, B can be

deduced. The inference engine selects, validates and triggers some of these rules to reach the

solution of the problem.

Logic used : In order to deal with uncertainty in items of evidence, fuzzy logic (Zadeh, 1965,

1983) has been implemented in the model to combine logically the conditions of the left-hand

side of the production rules. The value of a rule or a fact is either unknown or a number, pi,

between 0 and 1 representing the degree of truth associated with it. The operators AND, OR, and

NOT execute operations on these degrees of truth as follows:

pl AND p2 = min(pl,p2)

pl OR p2 = max(pl,p2)

NOT pl = 1-pl.

Process of Selection and F'iring of Rules • Among the strategies used by the inference engine to

select the rules, forward chaining and backward chaining are the most common. In forward

chaining, the inference mechanism works from an initial state state of known facts to a goal

state. It finds first all the rules that match the context, then it selects one rule based on some

conflict resolution strategy, and then execute the selected rule. Facts are inputs to the system. The

most appropriate hypothesis that fits the facts is deduced. For backward chaining, the system

-, tries to support a hypothesis by checking known facts in the context. If these known facts do not
* • support the hypothesis, the preconditions needed for the hypothesis are set up as subgoals. The

process for finding a solution is to search from the goal to the initial state, it involves a

depth-first search.

In order to simulate the behavior of an expert system, the process of selection and firing of rules

done by the inference engine has been modeled when a backward chaining strategy is used. A

trigger is associated with every rule (or operator). A rule is selected by the inference engine when

the trigger is activated. Only one rule at a time can be activated and the continuation of the

* O.selection and firing process is done according to the result of the rule:

4
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- If the result is unknown, the rule is put in memory and the rule which gives the value

of the first unknown precondition is selected.

'p - If the result is known, the last rule which was put in memory is selected again because

the produced result is the value of one of its preconditions.

-p Let us consider the example where we have two rules:

B => C()
A =>B (2)

and where the degree of truth of the fact A is known.

* The inference engine selects first rule (1). The degree of truth of C is unknown because the

degree of truth of B is unknown. Rule (1) is then de-activated and put in memory. Then rule (2)

is selected. Since the value of A is known, the value of B is deduce'd. Rule (1), which is the last

to have been put in memory, is selected again and the answer C is obtained.

Search for efficiency: The process of selection and firing of rules described above is repeated by
recursion until the final answer is found ; the process can last a long time. In the search for

efficiency and performance, unnecessary computations must be avoided. In some cases, there is

no need to know, the values of all the preconditions of a rule to deduce the value of its

consequence. For example, in boolean logic, if we have the rule.

A ANDB=>C.
* and we know that:

A is false,

then the consequence C is false and there is no need to look for the value of B to conclude that;

I the set of rules giving the value of B can be pruned.

In systems using fuzzy logic, this avoidance of unnecessary computations is all the more

important as computations are more costly in time and memory storage than in systems using

4 boolean logic. The problem is that little improvement in performance is obtained, if extra
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computation is avoided only in the case of complete truth (for the operator OR) or of complete

falsity (for the operator AND). The solution lies in the setting of thresholds for certain truth and

certain falsity. For example, in the case of the operator AND, if we have

A AND B => C

and if we know that the degree of truth of A is less than the threshold of certain falsity, then we

can deduce that the degree of truth of the consequence C is less than the degree of truth of A and,

therefore, less than the threshold of certain falsity. There is no need to know the degree of truth

of the precondition B. The thresholds for which no further search is required in the execution of

the operators are set to 0.8 for certain truth in the operator OR and 0.2 for certain falsity in the

operator AND. A rule or fact having a degree of truth larger or equal to 0.8 (resp. less or equal
to 0.2) will be considered to be true (resp. false). Therefore, the logic takes into account the

unknown rules or facts.

3.0 CHARACTERISTICS OF THE PREDICATE TRANSITION NETS USED IN THE

MODEL

Predicate Transition Nets have been introduced by Genrich and Lautenbach (1981) as an

extension of the ordinary Petri Nets (Peterson, 1980; Reisig, 1985) to allow the handling of
different classes of tokens.The Predicate Transition Nets used in the model have the following

characteristics.

3.1 Tokens

* •Each token traveling through the net has an identity and is considered to be an individual of a

given class called variable. Each variable can receive different names. For this model, two

classes of tokens are differentiated:

0 (1) The first class, denoted by P, is the set of the real numbers between 0 and 1,
representing the degrees of truth of the facts or items of evidence. The names of

the individual tokens of these classes will be p, pl, p2 .

(2) The second class is denoted by S. The individuals of this class can only take one
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value. Onlv one token of this class will travel through t..,: net and will represent
the action of the inference engine in triggering the different rules.

- ~3.2 Places

Places are entities which can contain tokens before and after the firing of transitions. Three

kinds of places are differentiated:

(1) places representing a fact or the result of a rule and containing tokens of the class
P or no token at all,

-.-- (2) places used by, the sy'stem as triggers of operators and containing the token of the

* class S. These places and the connectors connected to these places are represented

in bold style in the Figures and constitute the system net.

(3) places allowed to contain different kinds of tokens (P and S) and which are used

to collect the tokens necessary for the enabling of the transitions of which they are

the input places.

The marking of a place is a formal sum of the individual tokens contained in the place. For

example, a place A containing a token of the class P, p1 and the token of the class S has the

marking M(A):

M(A) = p1 + S

3.3 Connectors and Labels

Each connector has a label associated with it which indicates the kinds of tokens it can carry. A

special grammar is used on the labels to define in what way tokens can be carried. The labels of
connectors linking places to transitions contain conditions tthat must be fulfilled for them to carry

the tokens. The labels of connectors linking transitions to places indicate what kind of token twill

appear in the places after the firing of the transition.

The following notation in labels is used:

7
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When token names are joined by the sign "+" then the tokens defined by these names have to be
J%

S' carried at the same time. For example, the label 'p + S" indicates that one token of the class P
and one token of the class S have to be carried together at the same time by the connector.

When token names are Joined by the sign "," then the tokens defined by these names can be

carried at different times but not together. For example, the label "p, S" indicates that either a

token of the class P or a token of the class S can be carried.

Mixing of notation is possible. The label "p+S, S" indicates that the connector can carry either a

token of the class P and a token of the class S or only one token of the class S.

A connector without label has no constraint on the kind of tokens it can carry.

In some cases, the connector has to carry the token of class S when there is no token of the class

* P involved in the firing of a transition. The statement "absence of token of the class P" is denoted

by the symbol 0. This symbol is used in the labels, as if it was a class of tokens, in association

with the names of the other classes. The symbol 0 is used in the following cases:

(I) The label "S+0" means that the connector can carry a token of the class S, if there

is no token of the class P.

(2) The label "(S+p), (5+0)" means that the connector can canry either a token of the

class S and a token of the class P, or a token of the class S, if there is no token of
* the class P.

3.4 Transitions

Transitions have attached to them a predicate which is a logical formula (or an algorithm) built

from the operations and relations on variables and tokens in the labels of the input connectors.

The value (true or false) taken by the predicate of a transition depends on the tokens contained in

0. the input places of the transition. When the predicate has the value "true". the transition is

enabled and can fire. In the model of the consultant expert system, predicates are conditions on

tokens of the class P.

A transition without predicates is enabled as soon as all the input places contain the tokens

8
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specified by the labels of the connectors.

Transitions with predicates are represented graphically with squares or rectangles, The predicate

is written inside. Transitions without predicates are represented with bars as in ordinary Pet-i

Nets.

3.5 Firing Process

The conditions of enabling of a transition are: (1) the input places contain the combination of

tokens specified by the labels of the connectors, and (2) the predicate of the transition is true. If

these two conditions are fulfilled, the transition can fire. In the firing process, tokens specified

* by the input connectors are withdrawn from the corresponding input places and tokens specified

by the output connectors are put in the output places.

4 Let us consider the example shown on Figure 2:

A

Figure 2 Example of a transition with a predicate

4
The condition "p1 < p2" written in the transition represented by a square is true when the value
of the token named p1I coming from place A is less than the value of the token named p2 comning

from place B, as specified by the connectors. In this case, the transition is enabled and can fire;

4 the tokens p1 and p2 are withdrawn from the places A and B and a token pl is put in place C.

4.0 LOGICAL OPERATOR MODELS

In order to construct the model of the expert system using Predicate Transition Nets, it is

9
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necessary to construct first models of the logical operators AND, OR, and NOT. The results are

show~n in Figures 3, 4 and 5. Let us describe now what happens in the operator AND (the
operators OR and NOT behave in a similar way).

2+S+

:2~p Pi

":Q "/ p ,e :,((P I +S), . P s P

P 12, (p2 S),

p2+S P2S next

S Z S p2!..2

SS

P"::: p2,0 (p - ) S2 $

:-:::)

B+S

Figure 3 Model of the operator AND~5"

The operator drawn in Figure 3 realizes the operation:

A AND B => C.

It can be represented as a black box, having three inputs • A, B and Sc (the trigger) and six

outputs : C (the result), A, B (memorizing of the input value) and three system places SA, SB and

Snext. Only one of those system places (represented in bold style in the figures) can have a
0% system token at the output. Snext will contain a system token, if the result of the operation is

known, i.e., if C contains a token of the class P. This shows that the next operation can be

10
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perforined. If the result is unknon, i.e., the two inputs are not sufficient to yield a result, the

system token is assigned to SA or SB in orde; to get the values of these unknown inputs. A

.svstem token will be assigned to SA if (i) C is unknown and (ii) A is unknown or if A and B are

both unknown. The system token will be assigned to SB if C is unknown and only B is

unknown.

The execution of the operation will start only if there is a system token in Sc . We denote by Sc

* the trigger place of the operator computing C. As soon as there is a token in Sc , the two input
transitions are triggered by the allocation of a system token (S) at the input places of these

transitions. The values of A and B are therefore reproduced in A and B and in the output place of

c'ch of the transitions. These places contain also a system token, which will ensure the enabling

of the following transition (i.e., that the two inputs are present). These two places are the input

places of seven different transitions which have disjoint conditions of enabling. Only one of

' Sc

pl.S" pliS

(P (I2+S), . 8+S B >2 P

.. o,3."p2+S

SI next

PJ+

SS

B+S p2

SS

': Figure 4 Model of the operator OR

p2,

+S -

1+ 11

6Figure 4 Model... - -h, . " "..at, . . ,



1these transitions can be enabled and can fire. At the firing, the result, if any, is given in the result

place and then in C, while the system token is assigned either to Snext, or to SA , or to SB

These operators can be compounded in super-transitions. The model can be generalized to

operators with more than two inputs by combining these basic operators.

An example of the use of these logical operators is shown on the next section, where a simple

inference net is modeled and the search process in this net is simulated.

5.0 DYNAMIC REPRESENTATION OF AN INFERENCE NET

The connection of the super-transitions representing the logic operators to places representing the

items of evidence leads to a dynamic representation of an inference net. It allows to show

explicitly how the inference engine scans the knowledge base. By running a simulation program,

, we can see in real time what the steps of reasoning are, the possible deadlocks, or mistakes. It

allows one to identify the parts of the knowledge base where the knowledge representation is

incorrect.

1P'Z (S)S next

P, 
C

S%

S...

00 8+S' S

Figure 5 Model of the operator NOT
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Let us consider the simple svmbolic system containing the following rules

ifA and B => E

if C and D => D

if E or F => G

The standard representation of the inference net of this system (see section 3.1) is shown in

Figure 6.

IG9OR

E F

* AND AND

A B C D

Figure 6 Standard representation of the inference net of the example.

The representation of the inference net with Predicate Transition Net is deduced from this

representation by:

(1) replacing the rectangles representing the subgoals with the places of our model.

(2) replacing the formalism AND, OR, and NOT by the models of the operators

* aggregated in super-transitions, and linking these places to those transitions
(including the self loops).

(3) linking the system places of each operator according to the rules described in

section 4 for the scheduling of the checking of the unknown subgoals.

The representation of the inference net of the simple symbolic system, using the Predicate

.. Transition Net models of the logic operators, is shown on Figure 7. The interface module with

0. the user has been added through the places IA, IB, IC and ID, where the user can enter the

,...'
'-.,
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degrees of truth of A, B, C and D.
'I.

'.

AA
S xt

IC C0--:
. :I D (D ,D

DD

Figure 7 Inference net of a simple symbolic system,

using the Predicate Transition Nets formalism

4i The simulation of the propagation of the tokens in this net allows one to observe the reasoning

process followed by the system. The mapping of the different places of the net at each step of the

process of the simulation is shown on Table 1.

The search for the degree of truth of the goal G starts when the system token is put in the system

place SG, at the beginning of the search (step 1). The degree of truth of G cannot be evaluated

.4 when the operator OR is executed. The system token is therefore assigned to SE for the checking

of the subgoal E (step 2). The execution of the operator AND cannot lead to a result for E and the

- 'system token is allocated to SA (step3), which triggers an interaction session with the user to get

the degree of truth of A. The user enters this value (say 0.9) through IA (step 4) which is

assigned to A, while the system token is assigned to SE (step 5). Since, the degree of truth of A

is larger than 0.2, the result of the operator AND cannot be given in E and the system token is

assigned to SB (step 6) to get the degree of truth of B (say 0.8) through IB (step 7). The system

token is then re-assigned to SE to trigger the operator AND (step 8), which can now be executed.

The minimum of the degrees of truth of A and B, 0.8, is put in E, while the system token is

assigned to SG (step 9). Since the degree of truth of E is equal to 0.8, the operation OR can be

4-. 14
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performed to produce the result G equal to 0.8. The system token is allocated in Sn,, (step 10).

The subgoal F has not been checked and all the part of the net which is used to evaluate F has

been pruned.
.4.

TABLE 1 Mapping of the Places at the different steps of the simulation

A IA B 1B C IC D ID E F G SA SBISc SD SE SF SG ex

Step I I S
Stp-,
Step2 S

Step43 . S

Step 4 0.9 S

Step 6 0.9 S

Step 7 0.9 0.8 1 SII

Step 8 0.9 0.8 S

Step 9 0.9 0.8 1 0.8 S

Step 10 0.9 0.8 0.8 0.8 S

6.0 SOME APPLICATIONS OF THE MODEL

6.1 Assessment of Parallelism

The search for a solution with an expert system is very costly in time and memory storage and

some limits exist regarding the size and the kind of problem that can be solved. A way to

improve the performance is to dispatch the problem to different processors, each of them solving

a part of the problem concurrently. Results of each of the parts are sent to the appropriate
processors through a message passing protocol. The problem is that message passing is costly in

time. Therefore, the different tasks allocated to each processor have to be chosen very carefully

7,/ in order to minimize (i) the number of communications among the processors and (ii) the average

idle time in processors waiting for the result of a computation done on another processor. The

most reasonable way to do this is to allocate to each processor a part of the problem which is as

decoupled as possible from the other parts of the computation. The Predicate Transition Net
'S
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model of the inference net allow,\s to schedule the allocation of the rules to different processors.

This is done in the following way

We first transform the standard representation of the inference nel of the 'problem to be solved

into its representation with Predicate Transition Nets, described in section 5. This representation

is then modified by first suppressing the system net representing the action of the inference

mechanism to select the rules (i.e. all the places and connectors represented in bold style on the

Figures). and second, by suppressing the self loops representing the memorizing in the f=c base

of the intermediate results.

%' "

For example, the transformed net obtained from the representation of 'the exaipe of 'the simple

symbolic system, obtained from its representation shown on Figurre-7, is stm%-n on Figuire 8.

The obtained net looks like an ordinarc Petri Nets and the simple paths and the slices (Hillion,

S1986: Jin et al., 1986) of the transformed net can be deermined- The slices indicae the

operations which can be performed concurrently, while the simple paths indicate the sets of the

dependent rules which have to be scanned sequentially by the sy r.

IAB

lBB

For~~~~~~igr 8example, the transformed net fbandf o r the epresent ofh eparallesm e iml

J16
I %'I.4 on NP-N %

'"kN

'..-

-.?

.•

, .. ,Figure 8 Example of transformed net for the assessment ofparallelism.
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For the simple example presented in Figure 7, we consider four processors to handle the

problem. The slices of the ransformed net are"

Slice I : I IA. T1, IC, ID

Slice 2: {A, B, C, D)

Slice 3 : (E, F)

Slice4: IG)

The simple paths are•

Simple path 1 I A,A,E,G

Simple path 2 "TB,,E,G

Simple pah 3 : IC,C,F,G

Simple path 4 : IDD,F,G.

An effciem' way to allocate the Tules to io ssors is:

i ,4.

processor 1 IA,A,E,G

processor 2 IBB (send B to processor 1)

processor 3 IC,CF (send F to processor 1)

processor 4: IDD (send D to processor 3)

This allocation requires only three messaW passings among the four processors.

6.2 Timeliness

S'MThe model allows the evabtion vf fte time meeded -to'roduce wn oupt ; this is then used to

compute the timeliness of an organization using an expert system.

The timeliness ofan exper system is xelated to the number of riles in the rule base scanned by
the system to give an iaswer to a specific problem or goaL and t the number of interactions with

40.
the user. The model wx hmae ded allows A quick ideaificazion oAf he parts of the rule base

which have been scarmed, given a certain set of inputs, to wh a qxific goal, since each place

contains the token symbolizing the value of the rule or fact it --esents.

[0.
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Let us consider an expert system being used to give a certain answer in a certain environment.

We represent the input X i to the system as a n-tuplet where n is the total number of questions

which can be asked by the system. The answer to the questions are contained in this n-tuplet at

the location corresponding to the question asked (this may not be listed in the order of appearance

. in time). The locations for the unasked questions are left empty. We denote by ni the number of

questions asked by the system. The number of Xi s might be very large but it is bounded. Given

a certain environment, we can define a distribution pi(Xi) for the occurrence of the input X i.

For a specific input Xi, we can identify Ni, the number of places scanned by the system to reach

its goal, since they still contain the degrees of truth of the subgoals they represent. If T is the

average time to check a rule and t is the average time taken by a user to answer a question asked

by the system, then the time ti to get an answer given an input X i will be

ti = Ni t + ni t

Therefore, the average time of use T of the expert system for the set of inputs X i will be given

T =E[t 3] p, t, = p, N3 'r + p, n3 t

which leads to

T =ENi] t + E[ni] t

where E[X] denotes the expected value of the variable X.

The time T obwined is the average time needed to get an answer from the expert system.

7.0 CONCLUSION

In this paper, a model of an expert system with fuzzy logic as a means for dealing with

uncertainty has been developed using the Predicate Transition Nets formalism. This has been

'- '~done through the modeling of the basic logic operators AND, OR and NOT. The combination of

these operators makes it possible to represent the inference net of a consultant expert system

using production rules and to study its behavior dynamically. Two possible applications have

then been described: first, a method to assess the possible concurrency for the scanning of a rule

18
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base by a svstem having a parallel architecture. Second, a method to make time-related measures

of an expert system, taking into account the portion of the rule base scanned by the system and

the number of interactions with the user.
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